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Introduction

In recent years renewal theory has become one of the most power-

ful tools of the applied probabilist. in particular, it plays a

prominent role in the analysis of the behavior of type I and type II

particle counters.

There is an integral formula (due to R. Pyke) for the distribution of

the time between successive registrations with a Type I counter wider the

assumptions that the particles errive according to a general recurrent

process and that the counter has a random dead time. Unfortunately there

is no such simple formula in the case of the Type II counter. In chapter

I, I give a res=wme of the renewal theoretic approach to particle counting

problems and a shorter proof of Pyke's formula.

The pftysical literature has been mainly concerned with the case

of Poisson-arrivals0 The need for considering general recurrent input is

genuine, however, because scaling circuits and other devices used by

physicists destroy the Poissonian nature of the input (arrival) process0

For instance, if we count every r-th arrival in a Poisson process we

actually have an Erlang-r input process (I1e., the time between successive

arrivals has an Erlang-r distribution).

In his investigations of telephone traffic and Type II particle

counters Professor L. Tak~cs discussed both the distribution of V(t) =



the number of registered particles at time t and of (t) a the number

of impulses present in the machine at time t . Be formulated a recurfenoe

system of integral equati.ons for the binomial moments of the distribution

of (t) and solved them in the case where the dead time (impulse tire)

produced by each particle is exponentially distributed and the input is

recurrent, Although the random variable )-(t) is of primary concern in

particle counting, 1(t) is the essential random variable in the theory

of infinitely many server queueing systems as 2 (t) is precisely the size

of the queue at time t.
At the suggestion of Professor L. Takacs, I attempted to utilize his

methods to solve the more realistic problem where the dead time is allowed

to have Erlang-r distribution r > 1, rather than the exponential. Unfor-

tunately, the equations become quite involved and I succeeded in determining

only the Laplace transforms of the number of impulses present in the counter

at time t for Erlang-2 dead times. Luckily, I discovered another class

of distributions which are more tractable with respect to these problems,

even though they are not easily handled. The distributions I use are

"max- M" distributions, the maximum of m exponential distributions each

with parameter V .

After determining the number of impulses present in the type II counter

(the queue size problem) I turn to the main problem of particle counting,

the behavior of A(t). Here is where the "max-m" distributions make the

problem manageable. In order to obtain the mean time between consecutive

registrations consider the following bulk-queueing problem: Suppose that

the particles arrive in batches of size m, each particle independently

produces an impulse whose length is exponentially distributed with parameter

o Then if we allow the 2 stochastic processes:



1) Recurrent input; max-.m Impulse time and

2) Recurrent input; batch arrivals of size m with each particle producing

an exponentially distributed impulse to occur simultaneously we see that the

counter is free at the same time in both processes. Thus if We let O(t) =

the number of impulses present at time t in the second process, in

general 8(t) $ 7 (t) but at any time t when 1(t) = 0 8(t) also will

equal 0 and conversely.

In chapter 4, I determine the binomial moments of the ergodic distri-

bution of the imbedded Markov Chain for the batch arrival problem. Using

the limiting distribution of this chain and Wald's Fundamental Identity of

Sequential Analysis we can determine the mean time m between successive

registrations with max-m dead time. By the elementary renewal theorem the

number of "counts" at time t is asymptotically equal to --

Chapter 5 is concerned with two attempts to obtain formulas for the

variance of the time between consecutive registrations. I was unable to

obtain a formula in the case of general inter-arrival times, but I give an

approximate result for Erlang-r inter-arrival distributions if r is large.

My final chapter is devoted to a modified version of a problem

discussed by Professor W.M. Hirsch concerning the application of queueing

theory to missile defense systems, I treat the problem of attacking a

well fortified base (one with infinitoly many missile batteries). Because

of the simplicity of the model assumed we were able to introduce and calcu-

late explicitly a loss function which yields a reasonable criteria for

evaluating the effectiveness of certain attack and defense strategies. It

is hoped that this type of loss function will be "calculable" in more

complex situations.
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Chapter I Basic Renewal theory and the Type I Counter

The well known PoIsson process is a model for an integer valued

random process j9(t) ; t > O which counts the number of random events

occurring in the time interval (O,t) . Usually the events are represented

by the times V1 , 'r, ... of their occurrence. The random variables

% -. 1  e2='tI-'l- , "" , ent l " - are called the

successive inter-arrival times. More generally if the time differences

are assumed to be identically distributed positirre random variables with

a common distribution function F(x) , and if we denote by Vt the

number of events which occur in the time interval (O,t] , then we say

that {n, 9ti forms a recurrent (or renewal) process.

Notation: 1) PC8 _ x] = F(x)
00

2) E(e) = = xd(x)

3) v (0) =r.2 = r (X-.( )2 d(x)
0

4i) O(s) =-s 'eSdF(x)

0

Definition: The renewal function (or mean value function) of the renewal

process is defined by

m W) = EC() uw] nP( n1

Thus m(t) is the expected number of events occurring in the interval

(O,t] a

The role of the renewal function, both in theory 2nd praotice, can

hardly be overstressed. According to W.L. Smith (Ref. 1 page 24 6)



"... in most applications of renewal theory a knowledge of the renewal

function m(t) or even a knowledge of its asymptotic behavior for large

values of t, answers most of the questions we are likely to ask,"

In fact knowing m(t) we can determine F(x) from

5) 00 e'St dm(t) 0(s)

The most basic results of renewal theory will now be stated.

Theorem 1 (Elementary Renewal Theorem)

6) lim M W where =E(e) co

t-> 00

and the limit 1/0"- is interpreted as 0 if = oo

Theorem 2: If d2 (t) denotes the variance of 9 arid if C- 2 = V(0) < 00

then

7) lim d
t-Yoo

Theorem 3 (Asmptt.%Ac Normality)

If 6-2 < oo then for all real x

g- - IU

Theorem 4 (Blackwell's theorem)

If the inter-arrival time 0 is not a lattice random variable tund

E(0) < o then for any h > 0

9) l1m m(t+h) -(t)

t->coh



Theoram 5(W.L. Smith) If g(u) has bounded variation in the interval

C0, co) and P(x) is not a lattice distribution and its mean *( < o,

then we have

rn1 g(t-u)dm(u) 00 g( )du
t--.. 0otcf

We now describe the renewal theoretic approach to the problems of

particle countingo Assume that particles arrive at a counter at times

o = o T < b <. < T° < ... whore the On =r'n - 'n-1 are
0 1 2 3nn n-
independent, identically distributed positive random variables. Since

most counters have a positive "resolving time" not all the particles that

arrive are counted. Let the subsequence of JTnj denoting the arrival

times of the particles actually registered be 0 = 0 1 - 2

Again the On' = n the times between successive registrations are

identically distributed positive random variables, Therefore the primary

renewal process ten,ftj generates a secondary renewal process ten' )-'

where Vt = the number of particles counted in time (0,t). We denote

by R(x) the probability P fn < x) .

In order to ascertain the asymptotic behavior of the number of recorded

particles P(t), it suffices to determine the common mean m and variance

C2 of the distribution function R(x)o Once we know these values, then,

by the basic renewal theorems given earlier,

~ ~~L~ Var 2liram- m 3

t-> 0o t->o

The mechanism of the counter used determines how the subsequence

ltn) of "recorded events" is selected from the primary sequence of events



L ta. We say that the counter is free at time t, if It Is In condition

to register a particle arriving at that time, otherwise the counter is

said to be locked. The two standard counter mechanism are the type I

and type II counters. In a type I counter, if a particle arrives when

the counter is free then the counter is locked for a random time X called

the dead time or holding time or impulse time of the counter. Particles

arriving during the time X are not counted and have no effect on the

counter's operation. The type II counter differs from the typo I counter

in that every arriving particle locks the counter for a random locking

time X . Therefore a paarticle now is registered if and only if at the

time of its arrival all the dead times produced by the previous arrivals

have expired. With a type I conmter a particle is registered if at the

time of its arrivals all the dead time produced by the previous registered

particles have expired. It is assumed, of course, that the dead times

produced by the arriving particles (typeII counter) or by the registered

particles (type I counter) are identically distributed independent random

variables,

When the particles arrive according to a Poisson process, oeo,
F(X) = -1 -eX the following results are know.n, (see Takaes

[51 and Smith [4]),

For a type I counter m = 1 +?XE 2 = 1_2 i + 2 V(A)

where X is the dead time random variable P[z< x) = H(x)

Thus

For a type II counter: 1e E



while

AEE~~~~~qO9P H' 1 t+k~ 2 Rf%]
SJ' expL, 3.1- R y) dy-1 7+M

In order to present our shorter proof of Pyke's and Malr.quit Is

formulas for the type I counter we must give one more defint.'on

P-efinjitijo If we have the first registration at 0 a 0, an event of the

p, &mary sequence is reaisterable if it arrives after the dead t.me %0

produced by the first particle.
Theorem 6 (Pyke's Formul4: If PI\ "-I - xJ = F(x) and the en =

are mutually independent and if the dead times % produced by the n-th

particle (if it is registered) are distribute.I as H(x) and the "n ave

mutually independent and also are independent of the sequence ty'no

Then 0 n = I - T n has the distribution

zJn I ~ z =JF-) [I - F(z-u0j dm(u)
0

where

m(x) ' Fn(X),

Proof: Clearly we can assume that there is a registration at time 0

i.e. T= = 0 . Then

R(z) = P[there is a registration in (0.z)3

= Pthere is a registerable event in (0,zJ)

= P[the last event in (O,zj is :7egisterable)

0 U)i - F z_)IdFn (1O
2

{a, - H(u-) (1 - 1'(--u)] dM(u).
"0



The reasoning Is as follows: the probability that the n-th event Is

the last one occuring in (O,zl and is registerable is by the total pro-

bability theorem J' H(u)l - F(zu)J dFn(u) (because the n-th event
10

occurs at time u, 0.cs). As the last event in (O,iJ can be the n-th

for n = 0,1,2, ... again by the total probability theorem we obtain that

RW= 0 z -P ,F(z -u)ldFn (ux)

= f H (u-)1 - F (z-u)dM(u)0

Theorem 7, (Malmquist's Formula)o Under the same general assumptions of

Pykets theorem, except that now we assume that the counter is locked for

a constant time d when it registers a particle, we have

(3) R(z) :0 z < d d(3) - F(d) 8o F(z.-x) - o(d-x))dM(x)

Proof: s)=PPo R(z) P.here is a registerable event in (0,z])

= Pr.there is a first registerable event in (O,z)]

Here the first registerable e7ent is3 thp first one to arrive after time

d . The first arrival is the first registerable if it arrives in (d,zJo

The probability of this is just F(z) - F(d)o If n > 2, the n-th particle

is the first registerable if the (n-l)-t particle arrives at time x ,

x < d and the n-th arrives between d and z , By the total probability

theorem the probability that the n-th (n > 2) is first registerable is

therefore d

f d(s-x) P (d-x)IdFn_1 (x)
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Applying the total probability theorem again (on n) we obtain

R(z) = F(s) -F(d) + 'ffP(s-z) - F(d-x)IdPn.2.(x)

= F(z) - F(d) +jiF(t-x) - F(d-x)) dM(x)
0
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Chapter 11 G/Z

Introduction:

Consider a type II counter. The particles arrive at the instants

' f .. where n =1 j ~ 1,2 ... are Identically distributed

positive random variables with distribution function F(x)o Let

00

1) v(s) = 30 e"Sxd'p(x)

2) . = £xdF(x)

3) 02 = oX.)2d(x)

We shall assume that F(x) is not a lattice distribution and that

' < 00 ° Recall that in a type II counter every arriving particle

produces an impulse but only those particles arriving when the counter is

free will be registered. Let in denote the impulsa time or dead time

produced by the n-th arriving particle. We suppose that the I n

are identically distributed mutually independent positive random variables

which are also independent of [Tnl . In the present chapter we suppose

that the h have an Erlang-2 distribution.

4) H (z) = P t[X _(: ) -- 1 - O"P . Lxe- X

and we shall derive a formula for the Laplace transform of the r-th

binomial moment of the number of impulses present in the counter at time t

This random variable will be called 1(t) . Although theoretically we

can invert the binomial moments and obtain the exact distribution ofl(t)

the formulas obtained are too complicated for practical use in this

manner,



The random variable i(t) is not very interesting from the point

of view of particle counting but is the object of main interest in the

theory of infinitely many server queueing systems since V(t) is now

the queue size of the system G/E2y 00

Notation: Pk(t) = P-,2(t) = 0

The r-th binomial moment of V(t) is given by

By Jordants inversion formula

P (t) = (-)r 'k (r) B (t)

Br(s) = e st Br(t) Re(s) > 0

is the Laplace transform of the r-th binomial moment of

=o xdH(x) = f' Li- Hx)W]dx will always be

assumed to exist and be finite for all dead time distributionsused in

this paper,

2. A Review of the Results of Takt!cs

In this section we shall assume that (0) = 0 and P[ ! xJ - F(x)o

Consider the generating function

00 k
(2.1) G(t,z) = -.o Pk(t) "

Theorem 1: The generating function G(tz) satisfies the following



Integral equation:

t

Proof!

By the theorem of total probability

t

PO(t) = 1 -F(t) +fo (t-X) PO (t-x) dF(x)

since we have no impulses present in the machine if either there is no

arrival up to time t (the probability of this event is 1 - F(t)) or

there is a first particle arriving at x, 0 < x < t ; the impulse it

produces expires by time t (the probability of this is just H(t-x)) and

the process "renewed" at x has no impulses present at time t [Po(t-x)J
Similarly we obtain for k = 1,2, .°.

t

(2°4) Pk(t) =Jo Pk(t-x) H(t-x) + Pkl(t-x) C1 - H(t-x)JidF(x)

Multiplying the equations (2.4) by zk  and adding over k = 091,2, 000

we obtain (2,2) as desired.

Theorem 2. The binomial moments Br(t) exist for all t and can be determined

from the following reourrence formulas:

Bo(t) = 1 and
t

(2.5) Br(t) =So Br'i(t-x) 11 - H(t-x)3 dm(x) r - 1,2,

0

where mx) = Fn (x) and Fn(x) denotes the n-th - fold convolution of

P(x) with itself. Further



(2.6 Pk() -k ) B (t)

Proof: Clearly Br(t) = Cd GC .) z r = o,1,2, ...

r r dz z =1

Since B0 (t) = I upon differentiating equation (2.2) r times with

respect to z and evaluating at z = 1 we obtain

Br W = so Br(t-x) OW + So Bri(t-r)F). - H(t-x)IdF(x)

This a linear integral equation of the Volterra type for the unknown

B r(t) The solution is well known (it is obtainable by taking Laplace

transforms) to be

Br~ s (t 3 r(t-x) 1. - !I(t-x)] dmWx

To prove (2°6) we must show that the generating function G(t,z) is
analytic at z = I. It suffices to show that Br(t) < C for some

constant C. By (2.5) we can write

Br . +. . t + + 1 0 .... H(t-tr) dm(t)..dm(t

Let b be a fixed positive number and let k(x) = H(x-h) Since

m(t+h) - m(t) < 1 + m(h) for all t > 0 we

easily obtain
Brmt) -k ..J- (x) .. [l - k°(xr)) dx1  dxi

114) f..b~



Br~t)

+M 01 114 r wflere 00 xd W < 00

thus setting 0 1+ (h .(h+,P) we have proved that

G(t,z) is analytic a.; z =1 mid thus It in permissible to invert

o

Before proceeding to discuss the limiting behavior we review some

results from the theory of functions of bounded variation.

Lemma 1' The product of two functions each of which ic of bounded variation

is also of bounded variation.

Lemmra 2: The inteo ral of a function of bounded variation on a finite interval

La,,b3 is also of bomded variaiion on that interval.

Theorem 3: If TO xdll(x) < oo, = xdF(x) and F(x) is not a

latt-ce distribution then the limiting distribution

liz P( 1 (t) - k3 = P k = o,1,2, o.o exists

t->c00o

and is independent of the initial distribution and we have

(2.7) P 01 (c- (r) Br*
k ;&; k r)B1

where B,* is the r-th binomial momento;JPk and can be determined in

the following way:



(2.8) BB ,f Bandt) 1 - n(t)) dt

Proof:

First we shall prove the theorem in the particular case that (O)= 0

As B0 (t) = 1 clearly B0* 1 and by (2.5) we have

B 1 (t) = fo [I - Hf(t-ox)J dm(x)

As I - H(x) is monotone non-increasing we may apply Smith's theorem

to deduce that B, exists and equals

By lernma 1 Bi(t) is of bounded variation on every finite interval and

as the limit B1 * exists B1 (t) is bounded on the entire l.ne. We can

show (2.8) by induction. If we assume that

lim Br-l(t) = Br*1 exists, then by Smith's theorem
t->ao

applied to Br¢() = I Br (tx)l - H(t-x)J dm(x)

0 _~

we can conclude that

lim B r(t) = Br* exists and is given by (2.8)
t->co

Cr

Since Br*(t) _< - for t > 0

(2.9) lim G(t,z) = G*(t) exists and we have
co €



(2.10) G* () *Br (z-1)

The series (2,10) is convergent for all z. By (2.8) we see that

(2.11) G* (Z) = 1 - A jO0 G(t,z) C - H(t)3 dt.

Now G* (1) = 1 and according to the continuity theorem for generating

functions it follows that the limiting probabilities

I rn P [1(t) =k3 = Pk k = 0,1,2,,-*
t->O0

exist and that
* 00 *kG (Z ) = P k * .

Finally from (2,10)

Pk 1 dk * (z)B
Pk dT k ZO 'k Br

and thus the Br* (r 0,1,2, .,)

are indeed, the binomial moments of the distribution iPk This

completes the proof for the initial state 0. If we consider an arbitrary

initial state then the only difference is that 1 (t) is replaced by

J(t-' I ) + E(t) where TI  is the random arrival time of the first new

customer, (t) has the same distribution as our '1(t) and

lim PE(t) = 03 = 1 . (E(t) is the number of the original customer
t 00 

0
remaining in the queue at time t. Clearly j xdH(x) < co implies that

0
E(t) --)0 as t ->0o) . Consequently, ij(t-TI ) + E(t) has the same

asymptotic distribution as the special case 1(o) = 0 that we considered.

Thus the proof of the main theorem is now complete.
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3,. The xplcit Solu'ion in an Uperational Form

The fundamental recurrence between B r(t) and Br.l(t) Is

Br(t) = S0 Br -(t-x) d W (t-x)J dm(x)

When H(x) is Erlang-2 this becomes

(3.1) B (t) = ( B (t-x) + P(t-x) , P.(tx)] dm(x)
0r-

Upon taking Laplace transornz- ve obtain the rec;uvrence equation for the

corresponding transforms:

(3.2) Br(s) = L C Br1, i(s+±) - p Br1,1 (s+p.)J

As the urits w'n i'hich we meas-uae tine are completely arbitrary we

may assume that p. I without loss of generality. In order to make the

discussion as simple as possible we introduce the following notations and

operations.

d(s) = ?dA-s)s=

E: shifts r -->r + 1 seg. BI(s) = Bo(s) $ Pj3(S) = 1F0o(s)

FS shifts tl-e arg-ument s -> s + 3. e.,-. Fd(s) = d(s+l) ; Fkd(s) = d(s+k)

D. is the differ.ntiation operator.

It is imports.nt to note that while 0)E and F commute with each other ,

they do not commute with functions of a, Our equation (3,2) now becomes

the operational equation:

(3ot Br po(s) = d( -D)FEi' 1 P0(s) givan P ls) = s



ar

Theorem 3.1

(3-3) E" a e(a,..., ar)dDa l FdDa 2F2d. Darlr'ld(1.D) a r or

(a, ""'Ar-J.",r) > "

ar > a I r

.a i < j .for all J < v

(34) ,a:.,) = ,

Befo'e gvIY.!ig The proof' we give some prelIfLinary explanation, To

find Er 1/3 (s) we iust fir3t en-omer.te all the :--tunles (a., ., ,ar)

auch that 1) ap -' 2) _. a.T jf1 J<.' I 3 a!= .

V.or each i.,-tupe cons ider

(3o5) c .o,a r ,  od(s) D d(: + ) D (s+2) D - d .s+(r-.)),'.-i 1 ds--r)

whe;.'e c(a. , S, ,a.) is a constant depending :,n t he arran,,ern-n," choson ;,rc1

(l-D )a II to be expanded in. the binomia. Tcnrnu)a, 3 r (s 5., equal tc the

;3tm of ex'.r:eeIs:,.ons cf' the form of (3.5)

It !., int,,restLing to identiZfy the comb Iatcrial mea~din2 of the te. s

In the product of the coefficient C(a1,j .. ,. r ) > For chocking a3 we

tire given one ball j we can tako it (take I) or leave it (take O For

choosing a 2 we are given a new ball; if a, = 0 we choose a2 balls

from two balls Ioe. a2 = 0,1, or 2 while if al = 1 a2 a 0 or 1.

Similarly, we choose a balls 2rom j balls minim the number of balls



C , .;i The product

,. I oqu.lln the r.).betr of way, we can put r: :j-L \ e.. /
balls '.nto 2 co,.:in iuch a wtay that bho numbore of ball In the flrst

-,11 J

,;.'o!' cf ths theorem:

,-. .. .. .... . ' 1 ,,.. .ncd 'cth! ,ri A., tho formula lo.ldl for

: a .,n. it i"~ !t :i. x 4~t' £CL .ua. :jho-" It ho]d.:i for 8g o
11 . 1 ,__ , 2 21" -,

2..--: 7O."]'J"' . 2

.- d .. )_D I. . -,D )....

'L . a. .

,.. t x : U a

Best Available Copy a 3. -" .. .

0

'~' r-2+



(we omitted the operations since the a's in the c-term determine the

corresponding operation). By inverting the above system and remembering

that a 1 = I or 0 we see that

(3.6) e(l, a2 ..., anl, a) = - (a2 ,.., an., a)

while
(3°7) c(O, a2, .o, an, a) = + c(ap a-,..o, an, a-i)

- c(a2 -1, a31 .. , a)

- c(a2 , a3 -1, all..., a)

" c(a2, a3, a"-2, a.-l-l, a)

Notice that if aI = 2 c(a2,3 will be zero as (1) = 0 and

in general (n) = 0 if k > n° With this convention it is easy to see that

(3.6) holds ioe.

c(l, a2 ,*..,ar, a) - c(a2 ,ooo, artl, a-i) since

r-2 1

2 a3  anal

To see that (3.7) holds for our formula we use the elementary relation

(n) . (n1l) + (n-1 Thus
k k k-l)



(o, a2,..., =1 ,a) = (-a 3 " )

a2  a2  •3 at.,

as 2  a1 + this becomes
2 a2 a2 _

r-1

2a-i 3 :- -a- r-i

r-1

+ 12)3 -a2 - a,) 4 &3 - a2 a
a a3 aa arn

(3 -a-, /2- a , -a (. -,
Again use 3 a al a2 a,) + )(2 a2 -a

a3 a3 a3

and our expression becomes

-r-3(-1) 1 -ra 4-- 
nai

a2 a3 2-1 al %- ani,



(-1) (1 (1.=1&2a2 3 "4

Proceeding in this way (i.e., decompse a4 term next etc.) we obtain

c.. r.i= .~ (l%)s3a2=Aa (14ai (""\ a

(2° 3 81 " r- 3.a-r-3 r-2

+ a ti P a3  Ca -- ar I

3 " r-l

This last line in the above system becomes

2at "a-,)tms 3 2z-A a 1  -1 I-

r22 .

S A1)" -( a

(282.al)



Hence
aO ,, a 2 . l: a) = - c(a 2 - I, a3 , ... , a)

- C(a 2 , a3 ,,.., a)

- (a 2 , a3 .a - 1, a)

- c(a 2 , a3 ,..., a., a 1)

as desired and wet ve shown that the c's fit the relations (3.6) and (3°7)

thus if (3.3) holds for Er.l , it holds for E1 ., Therefore, as (3.3) is

correct for r = 1,2, by the induction hypothesis Er is given by (3.3)

for all r

4o The Limiting Distribution of J(t)

By standard Tauberian theory (see e.g, Doetsch [5]) if lim Br(t)
t-.oo

exists then lim Br(t) = lim s3r(s) . Since we know (f2) thatt> 00s-O

B li r Br(t) exists and that JB,! for r = 0,1,2, ... are thet-> 00
binomial moments of the limiting distribution Pk = im PCI(t) = k)]

t- p o

k = 0,1,2, .. o we can apply the Tauberian theorem referred to, We now

compute E* , andB 30

Lemma 1: lir se = i where . = xdF(x) < co
a -P 0 l--ta" T

Proof: V 1 - (a + o(s2).
) (a.s + Os 2 )

aC) - 0s
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The first three binomial moments of the limiting distribution are

1) B, 2

Proof: lur. S(S) = lim -(s- " s+2
s-*O s- 0 (s+1)-

2 q(
2) B* z 1 5Is A 2 ()

Proof: B2(s) = dPd(l-D) 2F2 (1/s) - dDPd(l-D)F2 1/s

B(s) . -j. - 2D + D2J 2 f(s) I__ e+

as 1- V( s+1 I-jJ I T Is s+
(s+2)Z s+2) (s+2)7

therefore

Si0 op (a) I'" (i)j



Similarly It can be shown that

3) B3  ~ f~l f 26(2

(2) + (2) (2)3

In the special case of Poisson arrivals f(s) '/A+s and we obtain

B*= 2Xi B2 *t 2X2 B * (2

which agree with earlier results of Tak~cs who showed that

Pk lir Pk(t) =i where -P = mean impulse time = 2
t-4ew,

if the locking time has an Erlang-2 distribution. Since the binomial

moments of the Poisson distribution of density V are gi ven by Br = V /rs ,

our formulas coincide with those of Takacs,
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Chapter III o/maxm/Oo

1 Introduction

In this chapter we again determine the Laplace transforms of the

binomial moments of 1 (t) = the number of Impulses present in the counter

at time t = the queue size of the queueing system G/max-m/co . Thus

we suppose that particles arrive at a type II counter according to a

recurrent process where the inter-arrival times n - Tn.11 n = 1,2,..o

are independent positive, non-lattice random variables.

Let F(X) = P[V1n - 'rn.. < K

= ox dF(x) < co

V(s) = T eSx dP(x)

Finally we assume that the locking time IL produced by the n-th particle

is the maximum of m independent identically distributed exponential random

variables ioe.,

H(x) =r <z PC ewt ],9 .~m in(Pi)) j'

It will be seen that the recurrence equations for the Laplace transforms

of the binomial moments will be easier to solve for the general max-M

distribution than for the case of Erlang-2 dead time distribution dealt

with in the previous chapter.



2. The Transient Behavior of 1(t)

In 1958 .)j Professor L. Tak~cs derived the following recurrence

equations for the r-th binomial moment at time t.
t

(2,1) B (t) B (t -z) (1 - Hct-)) d(x)

where H(x) is the dead.time distribution. In our situation the equation

to be solved becomes

(2.2) Br (t) =f- Br, t-x) (-m 10)' ( ) ~t xI dm(x)

Letting P(s) = e st Br(t) dt be the Laplace transform of Br(t)

we obtain from (2.2) the equation

(2.3) r s = r(" 1 )il ( CTr-I (s+j)4

for the Laplace transform of the r-th binomial moment. It Is to be

noticed that no derivative appears in (2.3) in contrast to equation (3,2)

of Chapter II and thus we have a pure m-th order difference equation to

solve, As Bo(t) M 1 for all t Po(S) = s for all s. For convenience

we shall set tL = 1, l-fS = d(s) and dk = d(s+k) . Then (2.3)

becomes

(2,4) P,(,) -d,€,)[ -1 ' ( ..,+)
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Theorem: he solution of (2-.4) Is

(2.5) P3 (8) = ~ )~ Mr (-V M~+2 . ~ . i-(lr2° 1-1- ' .'°..+ -i 1= u"
over all partitions

.(1, -".,%u) of k

such that

;- 1 =k J 1 um

Proof:

If r = 0 (S) = I/s. If r = 1 from (2o4)
m

(2.6) Pa) =d o -)J (m ) 3.

Now there is one and only one partition of 3 satisfying the conditions

of (2.5), namely, j itself, Therefore the coefficient of 7 is

(- 1)3+1 do( m)) as desired and thus formula (2.5) gives the solution

if r = 1 . We proceed by induction. Assume that the theorem is true

for all moments up to r - 1 In particular

r- = (r- 1) .k+r'1 r-ldd..

0 (l =i+u2  ul+u 2+ u 1=1

over all partitions

(uu 2 , ..., u 1) of" k

r-1
such that ujL k

and 1_u i cm



Sine P (a) a d(s)~ ?= (.011m ft.'S )It Is fairly clear that

Pr(s) Is given by our formula because the shift s + k -- > s + k +

has many partitions, each of which comes from a u1  chosen from

1, ... , J and another partition u2 , ... , Ur which is a partition of

k + - uI  The proper multiplier in each case is ( m ) or * ( m)ul L- uii i=2 i

Thus all we have done is to introduce new partitions of the numbers r to

mr the first of which is 5

In detail:

(2°7)
m j' +k+r-l doaj + d TO+.

r UOUJj U1+ Ul+u2+j U 'f" r- 2+j~
over all partitions

(Ul,. ... ,. l ) of k

such that
r-1 u. = k I< u i_ m

d ddudl+ joo m. ( )it
over all p~rtitions

(u,u 2 ,e..,Ur, 1 ) of k

such that

r-l



Let Y= k + J ,then Y varies from r to mr and our sum becomes

ruz 8.- Uu 1 4+2  • ...+%.1 11 1

over all partitions of

such that
r

as desired, In words, the 5 of the first sum (2°7) becomes the first

element u1  of the partition of J into r parts.

J 3. The Ergodic Behavior of 1(t) .

Although the formulas are rather cumbersome we can determine the

first few moments of the limiting distribution and can use the standard

Tauberian theory to obtain a general formula Br* the r-th binomial

moment of the limiting distribution tPk*" llm PC 1(t) = k] (see

chapter IIf4). Since Br* exists it is given by Br* = lim sPr(s)
4 0

Hence

(1) .u1 +u2 ** U+U 2 +o..+"r1 1 i1 '
all partitions

(Ul ,su,.u) of k

such that F u. = k

l'u1 ~T



where 6 (k)

To illustrate the use of (3.1) we compute B2* for the case

tihere 1(x) is max 2.

£2 I - (:_-)k+2  ( _/(m~(n

2. . U U2

over all partition3 2

(ulu 2 ) of k
such that

u.+u=k Z < 1 < 2

the partitis (u l ,u 2 ) of I = 2 are ul 1, u,2 =

" = 3 " u , =1,u 2 = 2 u., 2, u2 =1

" k14 u, " =2,u.=2

t~re're3.*~ ~)22 ) ) (2) (2 2(22therefot-e'3e '2+ (

i=,L

If () = + , that is If the arrivals form a. Poisson Process then

8k = a a we obtain

5 as de3ired

Of course Bl* = where JP is mean "locking time" and . is mean service

time for general distributions.

References: Same as Chapter 11,



Chapter W : A related Batch-Arrival Queueing problem and the deter-

mination of the mean time between consecutive registrations.

1 Introduction: So far we have concentrated our attention on the

random variable *1(t) = the number of impulses present in the machine

at time t , Although the queue size 1(t), is of fundamental Imp,.rt-

ance in the theory of infinitely many server queues it is not usually

of paimary interest in the theory of particle counters. *As we remarked

in the Introduction, the random variable central to the theory of

Counters is the "time between successive registrations" which we denoted

by R(x) .

In order to ascertain the mean of R(x) when the dead time has

a max-m distribution we introduce a new Stochastic Process which may

also be of Interest in the theory of bulk queues. We shall assume that

particles arrive in batches of size m at the type II counter each

particle producing an exponentially distributed impulse independently of

the other particles, Let O(t) be the number of impulses present in

the counter in this new process. In general, 8(t) is not equal to

(t), but 8(t) and 1(t) will be zero simultaneously. Thus the

time between two arrivals finding the counter free (i.e., R(x)) will be

the same in both cases. We shall see that it is relatively easy to

find the mean of R(x) in the 8(t) process because we can utilize a

1-dimensional imbedded Markov Chain.

2. The General theory for the Bulk-Arrival Model

In this section we shall derive the recurrence equations for the

batch arrival system where the particles arrive at the type II counter



(or customers at an inrinitely many server queueing system) in batches

of size m according to a recurrent process* The Inter-arrival

distribution P(x) is assumed to be non-lattice and positive. The

"dead time" produced by any particle (or service time of a customer)

is assumed to have the positive distribution function H(x) . Let

VTnj be the sequence of arrival points of the groups of particles and

let IL be the dead time produced by a single particle. We assume that

PITh "Tn-I -- xj = F(x) for all n and that the It n -*n~ll are.

mutually independent, Also the individual dead times produced are

mutually independent and also independent of the tV n system. Let S(t)

denote the number of impulses present in the counter at time t (equivalently

5(t) denotes the queue size at time t). For simplicity we assume
that S(0) = 0 and P[T < x1 = F(X). If we let Pk(t) = Pr8(t) = kc we

can derive an integral equation satisfied by

G(t,z) = Pklt)z o

Theorem 1: The generating function G(t,z) satisfies the following

integral equation

(2.1) G(t,z) = [-F(t)] + o G(t-x,z)[z + (l-z) H(t-x)3m&?(x)

Proof: By the theorem of total probability

(2.2) PO(t) * - F(t)3 +Jo ((t-x) mo()

(2.3) POOt~ ( , ) H(t-x)Jm [l - H(t-x)2 j(t-x)dP(x)
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Interchanging summation yields

or

G Gt) -- l - Ptt)) + Glt-xz V + (l-z) Hit-.)f dPx) q.ed

C Ok k

If we differentiate G(t,z) and evaluate at z = 1 then by

exactly the same method as used in chapter 2 in the section summarizing00

Iterangin 'rsurts wcn yioeds

GTeorem 2 t:I. th bnmial0momnts eltxi rH cnbet-X3,nek- bythez-jpx

Co

0If e diferntite = 0 d(t) and aea = 1ea ntena by

time u 0xdF(x) • oo o

(roo:5) Br) 1 B1(t)~ uft 3 (t) m11.H(t-sX)J id(x)
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thus taking Laplace transforna yields

B1(s) = Br(s) f(s) o m f(s) L [L-H]

where L[.-H is the Laplace transform of 1 - H(x)

Hence P1(s) =m) L C - H and by Inversion

Bn(t) [l) - H(t-x) dm(x)
0

00

where m(x) = ' Fn(x) and Fn(x) denotes the n-fold convolution

of F(x) .

Applying Smith's renewal theorem yields

(2o6) BI*'= m.P o qoe.d°

The major problem in using theorem 2 for practical purposes is

the presence of the j in the exponent of C - H(t-x)1 in formula

(2.5). This difficulty will be high-lighted when we specialize to the

case of exponential dead times in the next section,

f3. The Special Case of Exponential Dead Time and the Mean registration

time for the type II counter with Max-m dead time.

In this section H(x) = 1 - el= so that (2.5) becomes

(3-1) Br(t) = t, r f. )



Upon taking Laplace transforms we obtain the recurrence equation

for the Laplace transforms of the r-th binomial moments. Namely,

(3o2) Or I)  #-a f-M j ( )r-J.(+

It is to be noted that this equation will in general be an m-th order

difference equation with variable coefficients and will be difficult

to solve unless m = 1 .

We now proceed to discuss the imbedded Marko Chain in the case

of exponential dead-time, We shall again see that the technical

difficulties in this approach are due to the fact that the m will

appear as an exponent in the integral equation determining the generating

function of the queue size at arrivals.

If we let 6n = 8(tn - 0) be the number of impulses present just

before the n-th batch arrives the sequence Lan I forms a Markov Chain

with transition probabilities

(3-3) P(0 = k8n = J ) = Pk - 0 (J+m) -pik (1 .e6-px)J4-k dF(x) o

If we can find one solution JPk to the system of equations

00

(3°4) Pk = P

such that iPk is a probability distribution then by Foster's theorem

[2] the chain will be ergodic and tPkj will be its actual unique

limiting distribution, independent of initial conditions. Proceeding



as usual we introduce the generating functions U(Z) O pk k • Since

Multiplying by zk  and adding over k we obtain

U(Z) 00 0 P3 (Jrm) 8-g zk (1_-4,)J~- dF(x) or

(3.5) U(z) = 0 (1 eM + z () U - • "Pk + ze'"l') OW(x)

J00

Recalling that Brk) Pk is also equal to

1 dr!(z) and differentiating with respect to z r times in
;; r L s

the given equation we conclude that the binomial moments of the limiting

distribution satisfy the difference equation

(3.6) Br ) () ( )Bj m ,() ) Br~j

(3~6)Br (Zh) ?6(r-j 3  '~rL

If we can solve (3.6) for the binomial moments then we can find the

probabilities [Pkj by Jordar"s inversion formula. In particular Po/A

is the mean recurrence time of the time between batches arriving and

finding the counter free (or all servers free in the case of the



infinitely many server queue. However, this 0/- is also the mean time

between successive registrations in the V(b) process as (t) a 0 iff.

8(t) a 0 . This is, of course, the reason we considered the batch

arrival problem.

Notice that if we again set p = I f, a e(jp) d e

(3.6) becomes

(3,,7) ~ r=dr{7M* ( ) Brj3 If r <m

(3.7) Br dr ( )BrjS If r>rm

and B M

-elT-2 r 2

Theorem3; The general solution to (3o7) is given by

(3.8) B d, u+u "'" u i UiUl +2" u~2""u 1=1 ul

all ordered partitions of r

into r,r-l,...,l parts.

i.e. for each k < r consider
k

partitions (u.I,..o,uk)3 . . u = r

I c 1m



proof: By definition B0  1 B1 a md1  which Is also given by our

formula since there is only one partition of 1 namely u1 = I .

For B2 there are exactly two partitions of two (1,1) and (2) so

our formula yields

( T )2%d2 + ( m )d2  agreeing with a "brute

force" computation, The general proof is by induction. Suppose the

theorem is true for all r < r - 1 we must show it is true for Br

If r <m B~ dr ~ m ,3_

therefore

r mk
Br mdr d( du+U se d -M M. 1

of all ordered partitions )
of r-j into k parts k = 1,2,...,r-j

k
such that ui = r - 3

1 < U, < M

k
I=l ui)duldul+u2 ... d Ul+...+u k

all ordered partitions

of r Into k parts k = 1,,...,r

?=ui = r



where the empty bracket In to be read as one. Notice that the )

term is Just the last part of the partition of r into k parts i.e.,

Uk = J and thus we see that the proof if r <m is complete. The

proof for r > m is similar. As the formula (3.8) is true for

r = m by the previous proof we again use induction.

BrB =d 1 J m )r if r >m

m k.
= dr 11 ~T( M)d dd+0+j .ii ul ul+u2

all ordered partitions

of r-j into k parts

k x,..., r-j such that

k
i = r-j 1 <u, < m

since the ( m) term again becomes tho last part 3 of the total partition

of r and combines with all partitions of r - j to give a partition of

r into k + 1 parts. Note that for some k, especially small ones,

there may be no relevant partitions as the partition of r may have

uli's > m and (m) = 0  if ul > m . Actually it is not surprisingu I

that (3,7) and(3.7') have the same solution as they are identical if we

make the convention that = 0 if k > u .

We now are in position to give the formula for the mean of R(x).



'Theoiem 4: The mean time between successive registrations in the type II

Particle Counter where the arrivals form a recurrent process i.e.

e- l x) - F(x) T xdF(x) < oo and the impulse times

are max-m distributed is
A0 where

PO (l)rB r

where the Br ore given by (3.B)

Proof: By the fundamental theorem of recurrent events applied to

Markov Chains the mean number of steps in the chain before a return

to E0 starting from E0 is I/p0 . However the length of time between

successive steps of the chain is distributed as F(x) . If we regard

the R(x) distribution to be the sum of N F(x)'s where N = the

number of steps in the chain (or number particles that arrive) until

an arriving particle finds the counter free we can apply Waldts

Fundamental Tdentity to conclude that

00

E (f) + as = xdF(x) <ooo

Notice that the event N a n1 depends only on the first n-I F(x)

variables and thus the use of Wald's identity is justified. q.e.d

00

(3°9) Since PO 0 _ (0l)'Br

Cr
and as B3r _1 ' for some constant C the series for PO converges.



The usefulness of our approach depends on the rapidity of the convergence,

not just because we want to add up as few terms as possible but also

because the Br Is are difficult and tedious to compute for large r.

Nevertheless, by the introduction of an auxilliary stochastic process,

we have been able to give a precise formula r/P0  for the mean time

between successive registrations.

One standard device used in particle counting is a scaling

circuit which lets only every r-th particle through to the counter,

This, mathematically sp.aking, transforms the usual Poisson input into

Erlang-r input. In this case

(A/A s r

d(s)

and BOrn1

B, =m(A, +1)r

3. .(AA +l)r

B2  m2  (A+l)r (A .,+2) (A/A+ 2)r
I.(XAI~ r  . (A +2 '# lz (AA+ 25r'

If p = 1 m = 2 r-64 then B <

The usefulness of (3.9) therefore depends on the relative sizes

of m and r . In order to approximate a true dead time distribution

a large m will be needed as
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the mean of a max-m distribution is 4
the variance" " " " 21 /J2

and most dead time distributions will be "almost constant" and thus

the mean must be much larger than the variance.

§ 4. Using the 41(t) Process to Investigate the 5(t) process when

arrivals are Poisson

So far we have simply used the "batch arrivals" process as a

tool to determine the mean time between consecutive registrations for

the type II counter with general input and max-m impulse time. The

present section is devoted to a minor reversal of this procedure.

Suppose ve really were interested in the infinitely many server

queueing process where arrivals obey a Poisson law with parameter A

service time is exponential with parameter p. and the arrivals are in

batches of m . The standard approach C31_ yields the following set

of difference equations for the limiting distribution of the queue

siz6.

if k < m - 1 (k + l)4Pk+1  = ( + k)P k

if k>m (k + 1)4Pk+l = (X+kV.) - Pk-m

The usual method is to solve these equations in terms of PO
00

and then normalize using the condition PI 1 o In our case



it is difficult to obtain the general solution but P0  is known

to be equal to e where A- mean of the max-m distribution.

The justificiation for this assertion is that if we consider the

two processes in operation simultaneously we are in 0 in the

process if and only if we are in state 0 of the 41 process

G/max m/co . By Talcs' result LI] P0 
= e  

. In fact, Tak~cs

shows that the limiting queue size for an infinitely many server

queue with Poisson arrivals and general service distribution H(x)

is Poisson with parameter = xdH(x) < co
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Chapter : Attempts to Determine the Variance of the

"Time between Consecutive Registrations."

1, Introduction:

In order to obtain the asymptotic distribution of 4t '

the number of registered particles at tLme t , we need not only

the mean of R(x) but also the variance of R(x). Although we have

not been able to obtain a formula for the variance of R(x), we can

give an approximation to the variance for Erlang-r inter-arrival

distributions if r is large.

Despite the fact that we were ununcessful in our attempt

to discover the variance of R(x) , it is informative to review the

approaches used and to see the difficulties involved. The first

method uses Wald's Fundamental Identity. Let us consider the S pro-

cess. When the first batch of arrivals comes we keep on sampling

from the inter-arrival distribution util an arriving batch finds

the counter free. If N - the number of arrivals betwesn the regist-

rations including the 2nd registered particle i.e. N = n means that

after registration I, n-l particles were not counted but the n-th

was], then N = the recurrence time of the state E0 of the ibedded

chair n If 9 stands for the inter-arrival distribution and

SN = 0 + a2 + ... + N then SN has the distribution R(x). We

used this idea previously in showing that

E(R)= /Po as E(e) =.. and E(N) - /P o 0

Assuming that both N and 0 have finite second moments we can differ-



entiate Wald's Identity Caee Harris [I3 J and obtain the following

formula for E SN22

ErSN2] = 2E(NS, E(: - E1 2.1E2(e) + I(i)v(e)

The main difficulty encountered-in this approach is the determination

of E(NSN) . The quantity E(N2 ) is also hard to compute; nevertheless,,

we can give a formula for T (N) and thus for E(N2 ) . 1ecause

a 2(N) is very complicated this method will not be of practical

use evert if we could solve for EINSN.. It is of interest to realize

that the random variable N can be defined to be the number of steps

between successive transitions E0 ->Em in the chain i.6no

In the second part of the chapter we outline an approach

using integral equations, also developed by Tak'es. Unfortunately,

this second approach yields less than the first,

2o, An Approach via Wald's Fundamental Identity and Recurrent

Events .

As already indicated, the present approach is an attempt to

compute the second moment of R(x) by use of the formula

(2.l) ER2 I E [sN2) - 2E .NSN)E(0) - E M E 2 (e) + E(N) V(e)

We shall first determine o2 (N) = E(N2 ) - E2 (N) , the variance of

the number of steps between consecutive transitions 0 - Em in tne



Imbedded chain Ini

Recall that P k 0(j)ekx (1 - e-pX)j+m-kdc(x)

Let 1Pknj be the distribution of the number of impulses present

in the 8 process just before the n-th arrival. Starting from

the initial distribution [Pk(')- the distributions iPk(n)j can

be determined recursively by the formulas.

(2.l) Pk (n+l) n = 1,2,3,

Consider the binomial moments of the distribution of the queue size

at the n-th step

(2.2) Br (n) ZE j) 2 0 () k (n)

Using the elementary result that the binomial moments of the

Binomial (Bernoulli) distribution = () p k(lp)n-k ara just

Br = (n)pr we can prove:

Theorem: BO(n) 1 n = 1,2, ... and

(2°3) Br(n+l) = m ( )Br" where B (n) =0 ,P = n n k -k -V

Proof: If we let In n - - ,n- as usual, then conditional upon



n=x andO=j

E[( n+l ,  On +m )e. rP

because under the given conditions 8 is just a Binomial variable

with parameters j + m and o "  thus

3 00

Br(nl) r (?)B0 ( q+ood,
Br -

B n1L.(a)J (n)

If n -- c'o and Br lim Br(n) then the Br  satisfy
n-> co

equations previously derived for the ergodl distribution (see Chapter

WV equation (3.6)). Starting from Br(1 ) r o 1,2, .. the binomial

moments of the number of impulses present at the first arrival we can

use (2.3) to obtain the binomial moments of the number of impulses

present just before the n-th arrival (remember we are working with the

8(t) process) . If 8(0) o i and TI = X , 51 has a Bernoulli



distribution with parameters I and e "' x  and thus:

(2) Br ( ()Cpr r = 0,1,2,

We proceed to determine the generating function for the r-th
00

binomial moment of i~ Lot Br (w) ~ Br(n)wn

Lemma: Suppose 6(0) = 1 then the Br(w) satisfy the difference

equation:

(2.5) B (w) + -;: + (:)Brk(W)r~ ~ ~ ~ k '(rIvQBrk
(w )

Proof: BI (n+l) m tm B (n)
a T a;k"r-k °

Multiplying by w(n +l ) and summing over n we obtain

n + 00 m (n)wn
:F B :'W4 rw  'k --

or

B "(W ) " ( q r 49rw °MB -k

hence

B o(w) he + L l r( o)B (w)3 q.e.d.r r 3ik r-k

For the practical purpose of particle counting theory we



we may assume that initially we are in state E0 I.e. 8(0) U 0

Thus the equations to be solved are

M

(2.6) Br (w) -dr(w)l '()Brk()

BO(k) = w

whiere d (w) arw do (w) w

Theorem: The solutions of the equations (2.6) for the determination

of the generating functions of the transient behavior of the binomial

moments of J8n are given by:

(2.7)
k (

all ordered partitions (ul,. .. ,uk)

of r into k parts, k = 1,..., r
k

such that f 1 ui = r and 1 < ui < m

The proof is omitted as it is exactly the same as the one given for

the imbedded chain except that dr is now replaced by dr(w) . This
w

accounts for the presence of do(w) = in the formula (27)

As B0 = 1, d0 = 1 and so d0 failed to appear in (3.8) of chapter 1V

Since Br(w) is analytic in a neighborhood of the origin,



P0 (W) = = (-I)p Br(w) will also be analytic

in a neighborhood of the origin. In theory, therefore, we can use

Cauchy's integral formula for derivatives to determine the

JP0 (n)I n = 1,2, o.. * Let us again consider that ^"-y step in

the chain is one trial in a recurrent event scheme where the recurrent

event E is "we are in state 0 at the n-th trial" (or step of

the chain) . The random variable N which equals the rnxwber of trials

between successive occurrences of E and which equals the number of

steps between consecutive transitions E0 -' Em in the chain f8 n

is, of course, the object of our discussion. We already know that

E(N) = l/P 0 : By a problem in Feller's text [2j we can also

determine the variance of 1 1 Specifically

(2 .8 ) _ (p (n ) - P o)  C (N ) " /P ° +  (l/P )2
n = 2 (/PO)

where PO is the PO of the ergodic distribution and is given in

section 3 of Chapter V . Another expression for the right side of

(2.8) is

(2.9) 62(N) . i/P ° + (1/ o)2 0 (on)(2 .9 ) .. . .. .. .. l i r -p )w n

2(1/o) P -.1 n-U"4; T5



Unfortunately, the determination of ('2 (N) in this manner

requires far more computation than the determination of PO because

2(N) depends on the sum % (P(n) . P O ) . Also even if PO (n )

is "close to" P0 many terms will be needed to assure that

s 00
n (PO(n ) - P0 ) is close to 00 (P0(n  - PO). In theory, never-

theless, we have determined both the mean and variance of the

recurrence time of the O-state in the imbedded Markov Chain of the

8(t) process. Although we were able to deduce that the mean time

between successive registrations in both the 8(t) and the 1(t)

processes is equal to -/P, , we have been unable to discover an

expression for the variance of the "time between successive regist-

rations." The difficulty arises from the facu that Wald's

Fundamental Identity of Sequential Analysis yields an intractable

expression for the second moment of the sum of a random number of

random variables when the number chosen depends on a sequential

stopping rule. Under suitable conditions (see Harris [1]) we have

(2.lo) 4SW23= 2E(NSN)E(O) - E(N 2 )E 2 (e) + E(N)V(@)

where N = the number of random variables en , all of which are

independent and identically distributed as P(x), chosen, The

term E(NSN) is well known to be the "troublemaker."

In an important special case we can, however, approximate E(NS1 )
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Suppose we have a type II counter with max-m impulse time distribution

and we are counting particles arriving according to a Poisson Process.

If the particles pass through a scalar which lets only every r-th

particle through then the input to the counter is an Erlang-r process.

If r is large it will almost be a con-sdita "-Th. f e now calculate

E(NSN) if the inter-arrival distribution is a constant.

Lemma: If the input process is a constant i.e. the time between

consecutive arrivals is . > 0, Then

(2.11) E [NS E .(N2) A .

Proof: Under the hypotheses of the lemma PrEYNni - PrT - n,S3-n 3 thus

00
E(NSN) _ fl(-C)Pr(N =rn,SN = nA)

04 n2.( P r (N  = aE(N 2 )

When the arrivals have an Erlang-r inter-arrival distribution,

therefore, we suggest approximating E(.SN) by (E(N2) in equation

(2.10). As E(e) = rA =.A and V(e) = rK2  as 9 is now Erlang-r

we obtain from (2.10)

Var(S.) = E[s2 - E2[S] = 2(E (N2 )E(2) - E(N2 )E2 (a)

+ E(N)V(2) - E2(N)

2 E( 2 ) + E(N2) + E(N2 ) + E(N) r -/po)2



Thus if V(e) - 2 is small (thus how large r must be for

this approximation to be used depends on A ) we can say that
approximately 62(R), the variance of the time between consecutive

registrations is:

(2.12) 2(RI r2 62 (N) + 0 1

Since the times f n' of registrations of a particle form

a recurrent process, with P - x = R(x) and if we

denote by 9/ , the number of registrations by time t then

Feller's Central Limit theorem for recurrent events (theorem 3 of

chapter I) asserts that if 0-2(R) < o then the distribution of

V4t is asymptotically normal i.e,

t - 2

where P - E(R) - = .R)

Applying this result to the type II counter with Erlang-r inter-

arrival times and max-m dead time distributions the number Vt of

registrations by time t has approximately the asymptotic normal

distribution with parameters,

= (R) .1 0

M =2 R)=rZ 62 (N) + 1 r"=



In the paragraph above we have blithely written 1/P0 and

cy2(N) , It must be remembered that even in the case of Erlang-r

input they are not at all easy to compute.

§2. The registration time Distribution in the Case of Constant

Inter-arrival times.

So far we have devoted our attention to the case where

F(x) is non-lattice. In considering the variance of the time

between successive registrations for Erlang-r input, we used constant

arrivals to approximate Erlang-r input and were able to obtain an

approximation for a2(R) and thus give an approximation for the

asymptotic distribution of the number of registrations. When the

Inter-arrival distributions is constant () it is easy to derive the

exact distribution of the time R between successive registrations.

We shall again work with the 8 process, the arriving particle

produces m independent exponentially distributed (parameter g)

impulses.

Theorem: P[R = c.1 =~r~ 0 -kV-(
J11 J2"JkA

all (j, "***'Jk)

such that J, < r, J, + J2 < 2m

"'" J1 + " +Jk-l < (k-l)m

and Jl +"'+Jk = 'M



Proof: In order that the k-th arriving particle after a regist-

ration be the first one registered there must be at least one

impulse present at the times when particles 1,2,..., k-i arrive.

Therefore, at time . no more than (m-l) of the original impulses

can have ended i.e. J. impulses can expire by time -( where

Jl = 0,1,..., m-i but not m . In the next time interval (., 2.

J2 impulses end but if the second arrival is not to be registered

J2 
< m'-Jl + m or Jl + J2 < 2m . Similarly we see that in the

i-th (5-k) interval of length . j(i-l)s,i'1 i 1  impulses and

J. satisfies Jl + J2 + Go* + ji < im , Finally if the k-th

particle is the first to be registered, Jk = the number of impulses

expiring in C(k-l)4, k.j is equal to k= km- l +'"+ Jk-I )

Therefore:

all (al9...9' k) such that

Ji < m, J1 
+ j2 < 2m,.o, Jl+O+Jk < (k-l)m

Jl + " 00 + Jk = km

ek (PA) kn q] 1

all (al"".*9Jk) such that

Jl < M,.9000 JI +'''+ Jk-I " (k-l)m

J1 +***+ Jk = k m

To the best of the author's knowledge there is no Inown closed

form for this sun.
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Chapter 5B: The Integral Equation Approach

Although we have been able to obtain the mean of the "time

between successive registrations" assuming that the impulse time

obeyed a max-m law, we could not obtain the variance since it

depends on E[NSN] . In 1957, Professor Takacs suggested a now

approach which leads to integral equations for the mean and

variance of the times between consecutive registrations; conditional

on the impulse time produced by the previous registrant. After

summarizing Takacs methods we solve the integral equations for

a max-2 distribution. The situation, even for max-2 dead time

is surprisingly complicated.

2. A Summary of Takacs' Results

We assume, as usual, that particles arrive at a colmter

at times ' *r' T2' "'" each one produces an impulse of

duration nj where P3n -1 xj = H(x) and the Jh are

identically distributed and independent of one another and of the

-n sequence. We denote the subsequence of tnI n = 0,1,2,..o

of those particles actually registered by L'tn n = 0,1, ... .

When the times t n - r'n-l1 n = 1,2, ... between successive

arrivals are identically distributed as F(x) then the time

differences -n  'rn1 between successive registrations will

also be identically distributed random variables say R(x) . If

we let

V = xdP(x) C '2 (xmiL) 2 dp(x)



then our objective is to find

00
(2.1) A M -t = J' xdR(x)

(2.2) B DF- yj (XA)2 dR(x)

Once we've found A and B2 we can apply Feller's Central Limit

theorem of renewal theory to derive the asymptotic distribution of

i = the number of registrations occurring in the time interval

(O,t2, provided of course, that A and B2 are finite. To

determine A and B2 we introduce the following conditional expect-

ations.

(2o3) A(y) = NIrj 1%0 = y]

(2o1) B2 (y) = D2 [; iY = YD

Knowing these, by the theorem of total expectation we have

00
(2°5) A = J0 A(y)dH(y)

and

(2°6) B2  0 0 B2 (y)dlI(y) + fO [A(y) - A] 2 dH(y)

As the length of time between time 0 (when the event IVO

occurs) and the time that the next particle comes and produces

an impulse is distributed as F(x) we have

(2.7) c(Y) = MI.T I , =

(2.8) D2(y) = D2 [Ir17 0L y = -2



Theorem: The conditional expectation A(y) - MN I = Y3 can

be determined with the aid of the following integral equation:

(2.9) A(y) =S A(y- )H(y-x)dF(x) +So J A(z)dH(z))dF(x) + C(y)
y-x

Proof:

We have

S I = x, = y, = = x + A(Y-x) if 0 <z< Iy-x ahd O-x<

x+ A(z) if y-x_< z <ao and 0x<y

ify <x<o o

and (2.9) follows by the theorem of total expectation.

Theorem: The conditional variance B2 (y) = D2 rT I = y) can be

determined from the integral equation;

(2.10) B2 (y) Y4B2 (y..x)H(y-x)dP(x) .4Jy a 0 B2 (z)dn(z)JdF(x)
0 0 y-x

+jyx+A(Y-x)- 2H(y-x)dF(x) +i 47 Cr'rx + A(z)3 2 dH(z)3dF(x) + D2 (Y)
0 0 Y-x

Proof: We have

2B2(y-x) if 0 < z < y-x and 0 <x < y

n te r aY < X < 00

and the result again follows by the theorm of total expectation.



It should be recognized that equations (2.9) and (2.10) are

of the same type, since once we've solved (2.9) we can let

r(y) [x + A(YX)]?H(YX)d'(x) + cd{ r,+A (z) 2 d (Z)J dp (X) + D2 (Y)

for this will aimply be a fanction of y

Thern

B2(yI B2(_x)H(y- xdF(x) +j j JO B2z)dH(z)jdF(X) + NY
00 y-x

which is ideritical in forit with (2.9).

3o The application of the mothod to special dead time distributions°

In this section we shall treat the case of exponentially

distributed dead time in full detail. Then we proceed to formulate

the problem for max-m impulse times and solve the resulting equations

if m=2 o Finally we show how the lErlang-2 case leads to a still

more comzlicated equation.

Example: H (x) = I - e -V

We let s---- = esYA(y)dy f(s) = e'SdC(y)
s 0

and 11(s) = fo a sYdF (7)



Equation (2. 9) becomesa

(3.1) A(Y) rA(y-x)H(y-x)dF(X) + 0(Y) + ySDA (z) dH(z) dF (x)
Jo Y-~X

Takcing Laplace transfcrms we obtain

S 3S a+. S~

(3d M'(s) f1 5)V( 8+ 1)+ J()Vs)+ A4h '(S) +i

ar] 'nl.

By succcxssiv3 s~pplicsttions of' this f'oxriil vtci car- expreso ~m. in

terns C~j' -qf((, and (.).. This leads -to

(3,) +~1p~)=14f( tO + 11'.') j 'IJsnu,

If 1,73 l~t dn 4r(,,) ~~fi)

thl,- sinio:ifies to the recurslon relation:

0.5) Y4(s + (n+l)vi) = dn- cun W(s+np.)



'i:.ia:~;~~ The lynoxral nolut lo to (3.5) i~

n- 1.
+~

f tf

a i d it~

PlhuS "t *;Png Z>a) in (3 6) e concludeZ that

Best Avajlable COPY
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(3.7) '1)= ()'N() +p )

If we set a = p. we find that

I a-(j toJTj= -Ml

Thus A(y) car be determined b7 inversion of (3-7). It is of

interest to note that

(309) A = JO A(Y)pae'Ydy = jfyL)

The conditional variance B2 (y) may likewise be determined by

Laplace-Stieltjes transforms.

Example 2: H(X) = (-lJ(M) eg Jx

The equation to be solved is

(3.1O) A(y) = y A(y-x)H(yx)dF(x)+C(y) + y A(z)(z)d()
00 1 X



Forming Laplace-Stieltjes transforms we obtain:

(3-11) V(s) 3J+ -l IY 0 I(~~ '~3

If m = 2 the above equation becomes

f(s+2) - 24f(s+V) + lf(s) o  J r(2,0,) 2Y1V() + Io

where Wk sJ

Theorem:
r e sum of products of exactly k

(3.12) Y-(s+npL) WY(s4V)[ 2ii-l-2k terms from W5 OAn-2 chosen)
lk such that no two adjacent
&Yi's are taken

n_ f%.um of producta of exactly k

+ uI~s 2 lt erms from 'W1;; h-2 chosen+ (s - 2n2k such that ,t4 Is always present)

k-tupes from 2,..o . such
+ C4'(2v) - 2(P)3 [ 2nl-) + ) )that the coefficient of the khtuple\

6 (beginning with "Ir _ 2 is

n-2

- ;l Cn-i(s+i)

n all k-tuples from ca2 ,o...n 2 such

where C (a) = e ?n 2k that no two adjacent 4, Is are chosen
nform products and add,



This result is again proved by induction, The inductive argument

is omitted as this approach is evidently hopeless and we did not

pursue it further.

The reader may find it interesting that the corresponding

equations for Erlang-r dead time distributions are still harder to

handle than the ones for max-m impulse time.

Example 3: H(x) 1 - e - u

the basic equation (2.9)

A(y) J A(y-x)H(y-x)dF(x) + C(y) + so. SAzdHzdF(x)

now becomes

(3.13) A(y) = 5A(y-x)fl- e y - F + C(y)

x z r-le ILz

Ay A(z) rF zdF(x)

Taking Laplace transforms, recalling that

ands t 'SdF(x) ed()
soo

and that M1(s) = fo eSYdC(y)



we obtain

+2 -Zr- + /r-1 + rf(s)

+1
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4. Some Final Cozmments.

From the practical point of view we have not succeeded in

obtaining useful formulas, however, we have given a situation where

Erlang distributions are definitely not to be used. A further

interesting observation is that the max-m distribution is the sum

m eponential distributlons, p:ith parameters m,(m Vl)L, . Iio

Thus a distribution which iis tho --tt i of non-identically distributed

random variables was easier to handle then the Erlang-distribution,

the sum of identically distributed random variables even in the

integral equation approach. The reason for the success of the

1,"lang-distribution in the theory of the single server queue is that

we can keep track of the "phase" of service (or arrival) because

the customers are served in oi-der, Thus the the behavior of Ek/GA

can be deduced from that o^ the single server queue with Poisson

input and general service time whare the service is in batches of

size k. In the infinitely many sover queue the order of the arrivals

is ef no help to us as service begins on arrival and the second arrival

may well finish his service while the first is still in the queue.

From the stand point of trying to reduce the general problom to one

of bulk arrivals the max-m distributions would seem to be the

distributions to use. As we have seen, unfortunately, they do not

simplify the problem enough. We hope to have some more to say about

these problems at some future data.



Chapter 6. A Loss Function for an elementary

missile defense system.

In a talk presented at Colimibia in May 1961. Profe-sor

discussed the problem of defending an island against an air attack

*i..thna one nissil battery. He noted that the system has an

'-r.borb:in, ntate? in the serro that if ai attrckin'TY a e "s v-1.

S" y[' rl-.-0I:i'L 3 batt riy aftor ti~n t 0  .. 1 ..-

ovc-r the base and "ill attempt to des'roy the base,

In this note we shall discuss the problem of dteinir. ,

.sngth of tine unt!] absorption (the base is destroecd) o .r"

aszuning that:

1) the planes 9rrtve accorli.ng to a racurrent proces ,2.. -

nter-.arrival t.crTe.5 T n+ 'n are ine(pendent, identitfl.',

distributed po, .iv randor taiables., n..

2) The time J. r. takes the rn~.iIe battery to shoot a riar.o"'!nr I

. FosiGL~e r~zti,,. variable Hx) if . denotes the ie "",

to shoot down the n-th plane then P < (x) a n, I

mutually indepondcbit and independont of The {YA secironce., re

differ fror the usual queueing model in that we now asslrie that

P > t1 = 1 - H(t O ) = P > 0 where t o is the time we have to shoot

the plane before it Is in position to d3estroy the base.

3) le assume that wa have :'ifiitely many guns at the ba-e but o

use only one gun on each plane. However, we always have a gtti



This approach is just that of taking a random number of random

variables. The number N is given by a geometric distribution.

This N denotes how many rondom variables en - r - an- are

chosen. (see Feller r :).

f 2o A slightly generalized Model

In the -:cv-ious section: we asim,.med tha.t once the service timo

(total time used to shoot the plane) reached t 0  the plane destroyed

tho base This corresoonds in reality to perfect accuracy of the

bombardier. Therefore we now ass-Lie hat when the plane is over the

base a bomb is dropped and with probability C > 0 it destroys

the base. In order to determine G(x) in this case we simply

redofine p to equal C. - H(to.)IC which now gives the probability

that the n-th plane destroy. , the system.

T0 e 3oxd() Cl .. H(to)l eSto

To rI c (S) Cl-H(to)]

§3. A deeision theoretic criteria for efficiency.

In statistics one criteria for deciding upon a good estimate

is to choose a loss function (usually squared error L(6,0) - (8(x)-@)2)

and using that estimate minimizing the expected loss, Unfortunately

in most queueing pro:blems it Is very difficult to calculate these

expected losses. Ilowever, for our model it is easy. i fairly realistic

loss function would be of the forrn T, = Loss m *N j p(t) where k

would be a constant such as cost per plane and p(t) would be a

polynomial in t(time).
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But then

E() kZ(N) + E(P(t)

p

But from the fact that I a,-sYdG(x) Pe

we can cal.culate all the moments o: the randon variable t thus

van calculate E(p(t)). Flop instance if, p(t) =t

t.:p + q-A
E:(t) is 2~--n th1us If L = kN+ t

M(L= kp + top+ q-4

It is easily seen that the I-r-th moments of G(x) depend only on

P, to and the first k mortients of F(x) . Thus If all momlents of

FWx exist so do all the mo'ments of G(x).
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